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L INTRODUCTION

Centrifuge Test PRSAD? was designed to investigate the forces and soil deformation effects of an
extreme full-scale ice scouring event in a medium dense uniform sand through the application of
centrifuge modelling. Mode! preparation began on January 15, 1997, The test was performed on
January 30, 1997 and post test tnvestigations of subsurface soil deformation were carried out
immediately after the test.

As a result of the limited capacity of the horizontal drive, the scour could not be conducted at 150
# {1:150 scale). After repeated attempts at lowering the g-level the scour was successful at 75 &
75 gravities at the base of the model keel. The attack angle of the model keel was set at 15 degrees
to the horizontal. The keel width was 100 mm and the proposed scour cut depth was 33 mm.
corresponding to a prototype scour with nominal dimensions of 7.5 m width and 2.5 m depth. The
actual scoured surface profile was assessed following completion of the centrifuge test. The specified
rate of advance of the model keel was 100 mm/s. The model scouring was conducted in a testbed of
saturated reconstituted soil which comprised 100% F-110 Silica sand.

2 PROGRAM SUMMARY

Table 1 presents an updated summary of the test schedule.

Table 1 Updated PRISE Phase 3¢ Test Schedule
Test Testbed Material Scour Attack Test Status /
Designation Depth Angle Completion
(m) (deg) Date
PROOF Medium Dense Sand 5.0 30 Completed/June 1996
PRCS01 Medium Stiff Silty Clay 5.0 30 Completed/July 1996
TRIAL{PRS01) Pure Silt 0.5 30 Completed/Aug. 1996
PRSCO1 Clayey Silt LG 15 Completed/Oct. 1996
PRSCO2 Clayey Silt 2.0 5 Completed/Nov. 1996
PRCS02 Medium Stiff Silty Clay 5.0 15 Completed/Dec.1996
PRSAUI Medium Dense Sand 5.0 30 Completed/Jan. 1997
PRSAQ2 Medium Dense Sand 2.5 15 This Report 1997
PRSA03 Medium Dense Sand 2.0 i5 Proposed/Feb. 1997
PRSA04 Medium Dense Sand 2.0 15 Proposed/Feb. 1997




3. MODEL SEABED PREPARATION

The model seabed was prepared from fine sand with the index properties listed in Table 2. The sand
was dry pluviated into the centrifuge strongbox from a large hopper on a bed of dense coarse base
drainage sand in lifts of approximately 15 mm in thickness. The mass flow rate of sand was
controlled by a flow control valve plate at the hopper base release orifice. The dry density (p, ) of
the sand was periodically monitored during placement using small density cups {Tabie 3. The
average dry density und relative density (I,) were approximately 1.66 g/ce and 73.0 %, respectively.

After each ift was placed, it was levelled to the appropriate predetermined elevation using a vacuum
system and a thin veneer of blue colored sand was placed on the surface. Once this veneer of colored
sand was placed, lines of Jead shot were partially and evenly embedded into the colored material,
Both the colored sand layers and the lead shot grids were specifically designed and applied to
provide first hand visual and radiographic data on subsurface scour deformations. Pore pressure
transducers (PPT’s) were also installed in the testbed at strategic predetermined elevations to monitor
the pore fluid pressures developed during the centrituge model test. Complete details on the layout
and placement of the colored sand layers, lead shot grids and PPT’s are presented in Figure 1.

Upon completion of testbed, it was gradually saturated from the base upwards, under a vacuum of
approximately 70 kPa. This procedure was employed to ensure complete saturation of the sand
specitnen with negligible disturbance. After the saturation procedure was complete equally spaced
lines of colored spaghetti marker strands were inserted to a depth of approximately 170 mm into the
testbed as shown in Figure 4. These markers were specifically placed so that they could be
excavated after the model scour event to provide quantitative data on the lateral horizontal
displacement field developed off the scour centerline with passage of the keel.

Table 2 Properties of F-110 Silica Sand
Maximum dry density - Pamax = 1.78 glcc
Minimum dry density Pamin = 1.41 glec
Specific gravity Gs=2.66
Effective grain size Dy =0.10
Mean grain size D, =0.14
Uniformity coefficient Cu=1.50

%]



Table 3 Sand state at placement

Approximate depth below
testbed surface (mm) py (gfee) Dy (%)

- 40 1.67 74.2
40 - 50 1.67 74.2
8O- 120 1.67 74.9
120 - 160 1.65 70.2
160 - 200 1.66 73.2
200 - 240 1.66 72.5

4. INSTRUMENTATION AND DATA ACQUISITION

Details of PRISE Phase 3c experimental devices and procedures were presented in the Centrifuge
Proot Test Progress Report (C-CORE Publication 96-C21). Table 4 provides a summary of the
mnstrumentation used in Test PRSA02. In total, 20 active transducers were employed, including
instrumentation used to measure the vertical and horizontal loads and contact pressures acting on the
model keel, the keel position during the event, as well as the pore water pressure changes induced
within the sand testbed. Figure 2 shows the locations of the transducers which were attached to the
model keel, and Table 5 indicates the testbed positions of the individual pore pressure transducers.
Locations in the mode] are described with reference to a right-handed coordinate system with origin
at the centerline of the strongbox; the y-axis is directed along the center axis of the scour and defines
the horizontal position of the model keel in relation to the strongbox wall at the initial keel position;
the z-axis is directed laterally outward from the scour axis, and the x-axis is vertical with positive
values measured as depths below the initial sand surface, established following settlement.



Table 4 Test Instrumeniation
Device Identification Measured or Derived Quantity
Tension Cell TCO4A model horizontal force
Tension Cell TCO4B model horizontal foree
Load Cell LCO9 model vertical force / kee! front
Load Cell LCO2 modei vertical force / keel front
Load Cell LCO3 model vertical force / keel rear
Load Cell LC06 model vertical force / keel rear
Pressure Transducer PTOS contact pressure / horizontal base
Pressure Transducer PT11 contact pressure / inclined surface
Pressure Transducer PTO9 contact pressure / inclined surface
Pressure Transducer PT504863 contact pressure / inclined surface
String Potentiometer SPQO2 model horizontal position
Displacement Transducer LDT12 sand surface settlement
Pore Pressure Transducer PPT6925 soil pore water pressure
Pore Pressure Transducer PPT7474 soil pore water pressure
Pore Pressure Transducer PPT7476 soil pore water pressure
Pore Pressure Transducer PPT7478 soil pore water pressure
Pore Pressure Transducer PPT4378 surface water level
Pore Pressure Transducer PPT8063 standpipe water level
CPT Load Cell SANDCONE #2 cone tip resistance
CPT Vert. Potentiometer VDISPL cone vertical displacement




Table 5. Pore Pressure Transducer Locations

Transducer Xmm) | Y(mm) | 7 (mm) Comments
PPT7474 46 415 0 beneath testbed surface at centerline
PPT7478 81 415 0 beneath testbed surface at centerline
PPTeY23 155 415 { beneath testbed surface at centerline
PPT7476 204 415 0 beneath testbed surface at centerline

5. CENTRIFUGE SWING - UP AND SETTLEMENT

To begin the settlement phase of the test, the centrifuge was accelerated to 80 rpm over a time
duration of approximately 10 minutes. This speed equated to 75 gravities at the base of the model
keel. At this acceleration level, the model keel represented a prototype width of 7.5 m and a
prototype scour depth of 75 times the model cat depth.

Due to the limited capacity of the horizontal drive the package had to be swung-up a total of six
times. A linear displacement transducer (LDT) was employed to measure surface settlement. The
apparent total sand surface settlement was approximately 7.0 mm. The LDT response for the sixth
swing-up is presented in Figure 3. Based on this figure and the LDT responses for the previous swing
ups which include system compliance, it was estimated that the total surface settlement was 7.0 mm
vielding a dry density and relative density at the time of scour of approximately 1.74 g/cc and
90.0%, respectively.

6. IN - FLIGHT CONE PENETRATION TESTING

The C-CORE cone penetration test (CPT) apparatus was added to the test package equipment to
allow for the estimation of soil properties based on the results of cone penetration tests carried out
under the state of stresses actually experienced during centrifuge rotation. The cone tip employed
had an angle of 60 degrees with a cross-sectional area of 100 mm?. The support structure for the
apparatus was modified to accommodate the revised test configuration used in the Phase 3C
experimental programme.

A cone penetration test was performed at the location shown in Figure 4, adopting a nominal rate
of penetration equal to 3 mm/s. The test was conducted subsequent to the establishment of settlement
equilibrium conditions and immediately preceding initiation of the model scourin g event. The test
record is presented in Figure 5 which displays the profile of cone tip resistance 4. over a total depth
of penetration of approximately 180 mm. This profile suggests slightly more resistance than
observed in previous PRISE tests, which is reasonable due to the increased sand density. Values of



the effective interpreted cone tip resistance, (. for all PRISE tests conducted 1o date are presented
i Table 6 and are caleulated using the following relationship,

q::f =4, -

i

where u, is the initial pore pressure at the base of the keel. Plots of ¢/ depth often show a bilinear
relationship, with the response to about 4 or 5 cone diameters having a milder slope than the
response at greater depths. The CPT response near the surface underestimates the strength
characteristics of the soil due to interactions with the testhed surface. For this reason, values of g,
in Table 6 were determined by | inearly interpolating the CPT response at depth back o shallower
depths.

7. MODEL SCOURING EVENT

The model conditions applicable to Test PRSA(2 may be summarized as follows:

Model Scale 75:1
Scour Width 100 mm
Scour Cut Depth 31.7 mm {target 33.3 mm)

Attack Angle 30 degrees
Velocity 0.1 m/s
Material Fine uniform sand (D, = 90 %)

Data acquired during the scouring event included pore pressure measurements and resultant forces
and contact pressures acting on the model keel. The total horizontal force was computed through
summation of contributions from individual tension load cells (TCO4A and TCO4B) located at the
connection between the drive system pulling cables and the model keel. Figure 6 shows the measured
horizontal force for each tension cell plotted against keel displacement during the event. The total
average horizontal force imposed under apparent steady state scouring conditions was 4.38 kN at the
model scale.

The total vertical force was evaluated through summation of the responses of the four
tension/compression load cells (LCO2, LCO3, LCO6, and LCOY) which linked the model keel to the
carriage assembly. Figure 7 shows the measured vertical force for each load cell, plotted against keel
displacement during the event, The response of LCO9 was problematic and for this reason no
response data are available for the instrument. Since previous results have shown that the responses
of load cells at the front or rear of the keel are similar, it was assumed that the response of LCO9 was
similar to that of LC06. The average steady state values recorded at the front and rear of the model
keel were -1.31 and -3.77 kN (-compression, +tension) respectively. at the model scale. The total



average vertical force was -5.09 kN, which implied a vertical / borizopial force ratio of 1,16 for
steady state conditions.

The contact pressures deve! oped during the scouring event are displayed in Figure & which presents
the data records for four interface pressure transducers (PT11, PT09, PTOR and PT504863) mounted
on the model keel. The pressure record for the transducer focated at the horizontal base of the keel
indicated an average response over the duration of the avent of approximately 49 kPa. The two
pressure transducers situated on the lower positions of the inclined faces of the keel displayed sirnilar
average responses of approximately 559 and 555 kPa. The transducer located on the upper position
of the inclined face exhibited a slightly lower response of 442 kPa,

Figure 9 shows the keel displacement plotted versus time during the model scouring event, as
determined from measurements of the string potentiometer (SP02) which was attached to the
carriage assembly. This data record was used to evaluate the horizontal position of the mode) keel
in presentation of the results for each of the other transducers. The actual keel velocity or scour rate
was 105.6 mm/s, equal to the stope of the steady state portion of the displacement-time curve.

Pore water pressure changes were recorded by four pore pressure transducers (PPT7474, PPT7478,
PPT7476 and PPT6925). The locations of these transducers are shown in Figure 1 and Table 5. The
tesponse of PPT 7474 was problematic and for this reason no data are available for the response of
this instrument. A summary of the measured excess pore pressure responses during the model scour
event is presented in Figure 10. The maximum decrease in pore pressure was approximately 18 kPa
for the transducer located closest to the keel. The responses of the other transducers were seen to
decrease from 7 to 4 kPa with increasing distance from the keel,

8. INVESTIGATION OF SOIL DEF ORMATION

Post-test investigation of the sand testbed included photographic documentation and visual
inspection of scour morphology, profiling of the scoured surface, and examination of sub-scour
effects through excavation, photography and radiography. Photographs which display two different
views of the model scour are presented in Figure 11. The sidewalls of the incision were characterized
by a sharply sloping berm of heaved material along the entire length of the scour rising to a
maximum elevation on the order of 15 mm above the initial testbed elevation. A substantial frontal
spoil mound was developed at the front of the keel, which rose to approximately 30 mm above the
initial testbed surface,

Profiles of the deformed sand surface were acquired using the C-CORE laser profiling system.
Figure 12 shows an axial section profile measured at the centerline of the model scour.
Cross-sectional profiles obtained at horizontal intervals of 50 mm along the scour length are
presented in Figures 13 through 23, beginning from y-coordinate equal to 50 mm at the initial
position of the mode! keel. From Figure 12, it is apparent that the average scour depth attained for
the steady-state scouring condition was approximately 31.7 mm or 2.4 m at prototype scale. The
profile also displays the post-test surface configuration including soil movements {beave) which
developed subseqguent to passage of the keel. The corresponding berm elevations averaged 15 mm



above the initial surface level or 1.1 m at prototype scale. These values were not determined salely
from the laser profiles but were also measured after the package was unloaded. For this test, the laser
profiler maltunctioned and hence did not give accurate profiles. The profiles are inciuded in this
report to give an overall appreciation for the profile trends along the scour path.

The sand testbed was cut along sections both paralle] and perpendicular to the scour axis in order
to allow for photographic and radiographic examination of the deformed contiguration of the internal
colored fayers and lead shot (passive marker) grids. Figures 24 and 25 present digitized fraces of
radiographs which depict sectional views of the lateral and axial grids, respectively. Figures 27-30
present photos of axial testbed sections with colored sand layers and lateral colored spaghetti
markers directly beneath the keel at its final position (v = 700 to 1 010) at different lateral distances
(z =0, 25, 50 and 75 mm) from the centerline of the scour. Figure 31 presents a photo of the lateral
testbed section and colored sand layers directly beneath the scour path with coordinates y = 540 and
z = -150 to 150.

A summary of the test PRSA02 sub-scour displacement records is presented in Figure 26, where
representative average centerline values of the horizontal components are plotted against depth
below the base of the scour. For this test no measurable vertical displacements were detected. The
horizontal displacements shown in this plot were evaluated as the difference between the initial {pre-
scour) and final (post scour) axial grid marker positions. In Figure 26, the data point shown at the
base of scour is an extrapolated value. All other data points are measured values. This extrapolation
is more reliable for the horizontal displacements than for vertical displacements as the radiographic
markers in the axial section indicate both the magnitude and the gradient of the horizontal
displacements. In cross section, the radiographic markers only indicate the magnitude of the vertical
displacement. In Figure 26, horizontal displacements are plotted against final (post-scour) elevation
of the radiographic marker.

The maximum value of horizontal displacement at the level of the scour base was 0.6 m at the
prototype scale, as indicated from grid measurements acquired at sub-scour positions. The limiting
depth below the base of the scour at which significant horizontal displacements were measured was
3.7 m at the prototype scale. Based on these observations horizontal displacements extended 1o a
normalized value on the order of 1.5 scour depths beneath the scour base.

In all of the above estimates of subscour displacement, distortions inherent in the radiograph process
have been removed as discussed in C-CORE Publication 96-C34.

9. COMPARATIVE EVALUATION OF TEST RESULTS

The findings of the initial series of PRISE centrifuge model tests were summarized in C-CORE
Publication 95-C12. Table 6 presents a comparison of the Test PRSA02 resultant force data with

values acquired for all PRISE tests conducted in F-110 Silica sand over a range of relative densities.

The prototype horizontal and vertical components of the scour force derived for steady-state
conditions were 24.6 and 28.6 MN respectively in Test PRSA02, which are approximately two to



three times higher than those for other PRISE sand tests conducted at 75g. These force magnitudes
are dissimilar. giving rise 1o a force ratio of 1,16 which is reasonably consistent with most other
PRISE sand tests.

The region of large sub-scour soil displacement may be defined approximately for individoal
scouring events by specification of the apparent maximum values immediately below the scour base
{interpolated from the available displacement data) together with the limiting depth, below which
measured displacement magnitudes were less than 2 nominal lower bound of 0.2 m at the
corresponding prototype scale. A summary of the results for PRISE tests conducted in F-110 Silica
Sand and Test PRSA02 is presented in Table 7 which suggests that the displacement data for Test
PRSAO2 is reasonable in relation to previous tests,
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Scour Profile (y=450mm)
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Scour Profile (y=550mm)

{mm})

4
-

o
S

Vertical Elevation

i ; .
300 400 500 600 700 800 900 1000
Horizontal Position {mm)

w
O

]
ek
o
<
N
-
o

Scour Profile (y=600mm)

10—

(mmj

o

L
©

Vertical Elevation

H i
0 100 200 300 400 500 600 700 800 800 1000
Horizontal Position {mm)

Cross-Sectional Surface Profiles at y=550
mm and 600 mm




Scour Profile {y=650mm)
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Scour Profile {y=950mm)
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